plot_periodogram#
- plot_periodogram(ts: TSDataset, period: float, amplitude_aggregation_mode: str | Literal['per-segment'] = AggregationMode.mean, periodogram_params: Dict[str, Any] | None = None, segments: List[str] | None = None, xticks: List[Any] | None = None, columns_num: int = 2, figsize: Tuple[int, int] = (10, 5))[source]#
Plot the periodogram using
scipy.signal.periodogram()
.It is useful to determine the optimal
order
parameter forFourierTransform
.- Parameters:
ts (TSDataset) – TSDataset with timeseries data
period (float) – the period of the seasonality to capture in frequency units of time series, it should be >= 2; it is translated to the
fs
parameter ofscipy.signal.periodogram()
amplitude_aggregation_mode (str | Literal['per-segment']) – aggregation strategy for obtained per segment periodograms; all the strategies can be examined at
AggregationMode
periodogram_params (Dict[str, Any] | None) – additional keyword arguments for periodogram,
scipy.signal.periodogram()
is usedxticks (List[Any] | None) – list of tick locations of the x-axis, useful to highlight specific reference periodicities
columns_num (int) – if
amplitude_aggregation_mode="per-segment"
number of columns in subplots, otherwise the value is ignoredfigsize (Tuple[int, int]) – size of the figure per subplot with one segment in inches
- Raises:
ValueError: – if period < 2
ValueError: – if periodogram can’t be calculated on segment because of the NaNs inside it
Notes
In non per-segment mode all segments are cut to be the same length, the last values are taken.