FourierTransform#

class FourierTransform(period: float, order: int | None = None, mods: Sequence[int] | None = None, out_column: str | None = None)[source]#

Bases: IrreversibleTransform, FutureMixin

Adds fourier features to the dataset.

Notes

To understand how transform works we recommend: Fourier series.

  • Parameter period is responsible for the seasonality we want to capture.

  • Parameters order and mods define which harmonics will be used.

Parameter order is a more user-friendly version of mods. For example, order=2 can be represented as mods=[1, 2, 3, 4] if period > 4 and as mods=[1, 2, 3] if 3 <= period <= 4.

Create instance of FourierTransform.

Parameters:
  • period (float) –

    the period of the seasonality to capture in frequency units of time series;

    period should be >= 2

  • order (int | None) –

    upper order of Fourier components to include;

    order should be >= 1 and <= ceil(period/2))

  • mods (Sequence[int] | None) –

    alternative and precise way of defining which harmonics will be used, for example mods=[1, 3, 4] means that sin of the first order and sin and cos of the second order will be used;

    mods should be >= 1 and < period

  • out_column (str | None) –

    • if set, name of added column, the final name will be ‘{out_columnt}_{mod}’;

    • if don’t set, name will be transform.__repr__(), repr will be made for transform that creates exactly this column

Raises:
  • ValueError: – if period < 2

  • ValueError: – if both or none of order, mods is set

  • ValueError: – if order is < 1 or > ceil(period/2)

  • ValueError: – if at least one mod is < 1 or >= period

Methods

fit(ts)

Fit the transform.

fit_transform(ts)

Fit and transform TSDataset.

get_regressors_info()

Return the list with regressors created by the transform.

inverse_transform(ts)

Inverse transform TSDataset.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(ts)

Transform TSDataset inplace.

Attributes

This class stores its __init__ parameters as attributes.

fit(ts: TSDataset) Transform[source]#

Fit the transform.

Parameters:

ts (TSDataset) – Dataset to fit the transform on.

Returns:

The fitted transform instance.

Return type:

Transform

fit_transform(ts: TSDataset) TSDataset[source]#

Fit and transform TSDataset.

May be reimplemented. But it is not recommended.

Parameters:

ts (TSDataset) – TSDataset to transform.

Returns:

Transformed TSDataset.

Return type:

TSDataset

get_regressors_info() List[str][source]#

Return the list with regressors created by the transform.

Return type:

List[str]

inverse_transform(ts: TSDataset) TSDataset[source]#

Inverse transform TSDataset.

Do nothing.

Parameters:

ts (TSDataset) – TSDataset to be inverse transformed.

Returns:

TSDataset after applying inverse transformation.

Return type:

TSDataset

classmethod load(path: Path) Self[source]#

Load an object.

Parameters:

path (Path) – Path to load object from.

Returns:

Loaded object.

Return type:

Self

params_to_tune() Dict[str, BaseDistribution][source]#

Get default grid for tuning hyperparameters.

If self.order is set then this grid tunes order parameter: Other parameters are expected to be set by the user.

Returns:

Grid to tune.

Return type:

Dict[str, BaseDistribution]

save(path: Path)[source]#

Save the object.

Parameters:

path (Path) – Path to save object to.

set_params(**params: dict) Self[source]#

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters:

**params (dict) – Estimator parameters

Returns:

New instance with changed parameters

Return type:

Self

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()[source]#

Collect all information about etna object in dict.

transform(ts: TSDataset) TSDataset[source]#

Transform TSDataset inplace.

Parameters:

ts (TSDataset) – Dataset to transform.

Returns:

Transformed TSDataset.

Return type:

TSDataset