NonPredictionIntervalContextIgnorantAbstractModel#

class NonPredictionIntervalContextIgnorantAbstractModel[source]#

Bases: AbstractModel

Interface for models that don’t support prediction intervals and don’t need context for prediction.

Methods

fit(ts)

Fit model.

forecast(ts[, return_components])

Make predictions.

get_model()

Get internal model/models that are used inside etna class.

load(path)

Load an object.

params_to_tune()

Get grid for tuning hyperparameters.

predict(ts[, return_components])

Make predictions with using true values as autoregression context if possible (teacher forcing).

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

Attributes

This class stores its __init__ parameters as attributes.

context_size

Context size of the model.

abstract fit(ts: TSDataset) AbstractModel[source]#

Fit model.

Parameters:

ts (TSDataset) – Dataset with features

Returns:

Model after fit

Return type:

AbstractModel

abstract forecast(ts: TSDataset, return_components: bool = False) TSDataset[source]#

Make predictions.

Parameters:
  • ts (TSDataset) – Dataset with features

  • return_components (bool) – If True additionally returns forecast components

Returns:

Dataset with predictions

Return type:

TSDataset

abstract get_model() Any | Dict[str, Any][source]#

Get internal model/models that are used inside etna class.

Internal model is a model that is used inside etna to forecast segments, e.g. catboost.CatBoostRegressor or sklearn.linear_model.Ridge.

Returns:

The result can be of two types:

  • if model is multi-segment, then the result is internal model

  • if model is per-segment, then the result is dictionary where key is segment and value is internal model

Return type:

Any | Dict[str, Any]

classmethod load(path: Path) Self[source]#

Load an object.

Parameters:

path (Path) – Path to load object from.

Returns:

Loaded object.

Return type:

Self

params_to_tune() Dict[str, BaseDistribution][source]#

Get grid for tuning hyperparameters.

This is default implementation with empty grid.

Returns:

Empty grid.

Return type:

Dict[str, BaseDistribution]

abstract predict(ts: TSDataset, return_components: bool = False) TSDataset[source]#

Make predictions with using true values as autoregression context if possible (teacher forcing).

Parameters:
  • ts (TSDataset) – Dataset with features

  • return_components (bool) – If True additionally returns prediction components

Returns:

Dataset with predictions

Return type:

TSDataset

save(path: Path)[source]#

Save the object.

Parameters:

path (Path) – Path to save object to.

set_params(**params: dict) Self[source]#

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters:

**params (dict) – Estimator parameters

Returns:

New instance with changed parameters

Return type:

Self

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()[source]#

Collect all information about etna object in dict.

property context_size: int[source]#

Context size of the model. Determines how many history points do we ask to pass to the model.

Zero for this model.