LambdaTransform#
- class LambdaTransform(in_column: str, transform_func: Callable[[DataFrame], DataFrame], inplace: bool = True, out_column: str | None = None, inverse_transform_func: Callable[[DataFrame], DataFrame] | None = None)[source]#
Bases:
ReversibleTransform
LambdaTransform
applies input function for given series.Init
LambdaTransform
.- Parameters:
in_column (str) – column to apply transform
out_column (str | None) – name of added column. If not given, use
self.__repr__()
transform_func (Callable[[DataFrame], DataFrame]) – function to transform data
inverse_transform_func (Callable[[DataFrame], DataFrame] | None) – inverse function of
transform_func
inplace (bool) –
if True, apply transformation inplace to
in_column
,if False, add column and apply transformation to
out_column
Warning
throws if inplace=True and
out_column
is initialized, transformation will be applied inplace- Raises:
Value error: – if inplace=True and
inverse_transform_func
is not defined- Parameters:
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) LambdaTransform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) –
- Return type:
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- inverse_transform(ts: TSDataset) TSDataset [source]#
Inverse transform TSDataset.
Apply the _inverse_transform method.
- classmethod load(path: Path) Self [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get grid for tuning hyperparameters.
This is default implementation with empty grid.
- Returns:
Empty grid.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )