FourierTransform#
- class FourierTransform(period: float, order: int | None = None, mods: Sequence[int] | None = None, out_column: str | None = None)[source]#
Bases:
IrreversibleTransform
,FutureMixin
Adds fourier features to the dataset.
Notes
To understand how transform works we recommend: Fourier series.
Parameter
period
is responsible for the seasonality we want to capture.Parameters
order
andmods
define which harmonics will be used.
Parameter
order
is a more user-friendly version ofmods
. For example,order=2
can be represented asmods=[1, 2, 3, 4]
ifperiod
> 4 and asmods=[1, 2, 3]
if 3 <=period
<= 4.Create instance of FourierTransform.
- Parameters:
period (float) –
the period of the seasonality to capture in frequency units of time series;
period
should be >= 2order (int | None) –
upper order of Fourier components to include;
order
should be >= 1 and <= ceil(period/2))alternative and precise way of defining which harmonics will be used, for example
mods=[1, 3, 4]
means that sin of the first order and sin and cos of the second order will be used;mods
should be >= 1 and < periodout_column (str | None) –
if set, name of added column, the final name will be ‘{out_columnt}_{mod}’;
if don’t set, name will be
transform.__repr__()
, repr will be made for transform that creates exactly this column
- Raises:
ValueError: – if period < 2
ValueError: – if both or none of order, mods is set
ValueError: – if order is < 1 or > ceil(period/2)
ValueError: – if at least one mod is < 1 or >= period
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) Transform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) – Dataset to fit the transform on.
- Returns:
The fitted transform instance.
- Return type:
Transform
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- classmethod load(path: Path) Self [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
If
self.order
is set then this grid tunesorder
parameter: Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )