StatisticsRelevanceTable#

class StatisticsRelevanceTable[source]#

Bases: RelevanceTable

StatisticsRelevanceTable builds feature relevance table with tsfresh statistics.

Init RelevanceTable.

Parameters:

greater_is_better – bool flag, if True the biggest value in relevance table corresponds to the most important exog feature

__call__(df: DataFrame, df_exog: DataFrame, return_ranks: bool = False, **kwargs) DataFrame[source]#

Compute feature relevance table with get_statistics_relevance_table() method.

Parameters:
Return type:

DataFrame

set_params(**params: dict) Self[source]#

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters:

**params (dict) – Estimator parameters

Returns:

New instance with changed parameters

Return type:

Self

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()[source]#

Collect all information about etna object in dict.