DirectEnsemble#
- class DirectEnsemble(pipelines: List[BasePipeline], n_jobs: int = 1, joblib_params: Dict[str, Any] | None = None)[source]#
Bases:
EnsembleMixin
,SaveEnsembleMixin
,BasePipeline
DirectEnsemble is a pipeline that forecasts future values merging the forecasts of base pipelines.
Ensemble expects several pipelines during init. These pipelines are expected to have different forecasting horizons. For each point in the future, forecast of the ensemble is forecast of base pipeline with the shortest horizon, which covers this point.
Examples
>>> from etna.datasets import generate_ar_df >>> from etna.datasets import TSDataset >>> from etna.ensembles import DirectEnsemble >>> from etna.models import NaiveModel >>> from etna.models import ProphetModel >>> from etna.pipeline import Pipeline >>> df = generate_ar_df(periods=30, start_time="2021-06-01", ar_coef=[1.2], n_segments=3) >>> df_ts_format = TSDataset.to_dataset(df) >>> ts = TSDataset(df_ts_format, "D") >>> prophet_pipeline = Pipeline(model=ProphetModel(), transforms=[], horizon=3) >>> naive_pipeline = Pipeline(model=NaiveModel(lag=10), transforms=[], horizon=5) >>> ensemble = DirectEnsemble(pipelines=[prophet_pipeline, naive_pipeline]) >>> _ = ensemble.fit(ts=ts) >>> forecast = ensemble.forecast() >>> forecast segment segment_0 segment_1 segment_2 feature target target target timestamp 2021-07-01 -10.37 -232.60 163.16 2021-07-02 -10.59 -242.05 169.62 2021-07-03 -11.41 -253.82 177.62 2021-07-04 -5.85 -139.57 96.99 2021-07-05 -6.11 -167.69 116.59
Init DirectEnsemble.
- Parameters:
- Raises:
ValueError: – If two or more pipelines have the same horizons.
Methods
backtest
(ts, metrics[, n_folds, mode, ...])Run backtest with the pipeline.
fit
(ts)Fit pipelines in ensemble.
forecast
([ts, prediction_interval, ...])Make a forecast of the next points of a dataset.
load
(path[, ts])Load an object.
Get hyperparameter grid to tune.
predict
(ts[, start_timestamp, ...])Make in-sample predictions on dataset in a given range.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.- backtest(ts: TSDataset, metrics: List[Metric], n_folds: int | List[FoldMask] = 5, mode: str | None = None, aggregate_metrics: bool = False, n_jobs: int = 1, refit: bool | int = True, stride: int | None = None, joblib_params: Dict[str, Any] | None = None, forecast_params: Dict[str, Any] | None = None) Tuple[DataFrame, DataFrame, DataFrame] [source]#
Run backtest with the pipeline.
If
refit != True
and some component of the pipeline doesn’t support forecasting with gap, this component will raise an exception.- Parameters:
ts (TSDataset) – Dataset to fit models in backtest
metrics (List[Metric]) – List of metrics to compute for each fold
n_folds (int | List[FoldMask]) – Number of folds or the list of fold masks
mode (str | None) – Train generation policy: ‘expand’ or ‘constant’. Works only if
n_folds
is integer. By default, is set to ‘expand’.aggregate_metrics (bool) – If True aggregate metrics above folds, return raw metrics otherwise
n_jobs (int) – Number of jobs to run in parallel
Determines how often pipeline should be retrained during iteration over folds.
If
True
: pipeline is retrained on each fold.If
False
: pipeline is trained only on the first fold.If
value: int
: pipeline is trained everyvalue
folds starting from the first.
stride (int | None) – Number of points between folds. Works only if
n_folds
is integer. By default, is set tohorizon
.joblib_params (Dict[str, Any] | None) – Additional parameters for
joblib.Parallel
forecast_params (Dict[str, Any] | None) – Additional parameters for
forecast()
- Returns:
metrics_df, forecast_df, fold_info_df – Metrics dataframe, forecast dataframe and dataframe with information about folds
- Return type:
Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]
- Raises:
ValueError: – If
mode
is set whenn_folds
areList[FoldMask]
.ValueError: – If
stride
is set whenn_folds
areList[FoldMask]
.
- fit(ts: TSDataset) DirectEnsemble [source]#
Fit pipelines in ensemble.
- Parameters:
ts (TSDataset) – TSDataset to fit ensemble
- Returns:
Fitted ensemble
- Return type:
self
- forecast(ts: TSDataset | None = None, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), n_folds: int = 3, return_components: bool = False) TSDataset [source]#
Make a forecast of the next points of a dataset.
The result of forecasting starts from the last point of
ts
, not including it.- Parameters:
ts (TSDataset | None) – Dataset to forecast. If not given, dataset given during :py:meth:
fit
is used.prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval
n_folds (int) – Number of folds to use in the backtest for prediction interval estimation
return_components (bool) – If True additionally returns forecast components
- Returns:
Dataset with predictions
- Raises:
NotImplementedError: – Adding target components is not currently implemented
- Return type:
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get hyperparameter grid to tune.
Not implemented for this class.
- Returns:
Grid with hyperparameters.
- Return type:
- predict(ts: TSDataset, start_timestamp: Timestamp | None = None, end_timestamp: Timestamp | None = None, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset [source]#
Make in-sample predictions on dataset in a given range.
Currently, in situation when segments start with different timestamps we only guarantee to work with
start_timestamp
>= beginning of all segments.- Parameters:
ts (TSDataset) – Dataset to make predictions on.
start_timestamp (Timestamp | None) – First timestamp of prediction range to return, should be >= than first timestamp in
ts
; expected that beginning of each segment <=start_timestamp
; if isn’t set the first timestamp where each segment began is taken.end_timestamp (Timestamp | None) – Last timestamp of prediction range to return; if isn’t set the last timestamp of
ts
is taken. Expected that value is less or equal to the last timestamp ints
.prediction_interval (bool) – If True returns prediction interval for forecast.
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval.
return_components (bool) – If True additionally returns forecast components
- Returns:
Dataset with predictions in
[start_timestamp, end_timestamp]
range.- Raises:
ValueError: – Value of
end_timestamp
is less thanstart_timestamp
.ValueError: – Value of
start_timestamp
goes before point where each segment started.ValueError: – Value of
end_timestamp
goes after the last timestamp.NotImplementedError: – Adding target components is not currently implemented
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )