get_ruptures_regularization#
- get_ruptures_regularization(ts: TSDataset, in_column: str, change_point_model: BaseEstimator, n_bkps: Dict[str, int] | int, mode: OptimizationMode, max_value: float = 10000, max_iters: int = 200) Dict[str, Dict[str, float]] [source]#
Get regularization parameter values for given number of changepoints.
It is assumed that as the regularization being selected increases, the number of change points decreases.
- Parameters:
ts (TSDataset) – Dataset with timeseries data
in_column (str) – name of processed column
change_point_model (BaseEstimator) – model to get trend change points
n_bkps (Dict[str, int] | int) – target numbers of changepoints
mode (OptimizationMode) – optimization mode
max_value (float) – maximum possible value, the upper bound for search
max_iters (int) – maximum iterations; in case if the required number of points is unattainable, values will be selected after max_iters iterations
- Returns:
regularization parameters values in dictionary format {segment: {mode: value}}.
- Raises:
ValueError: – If max_value is too low for needed n_bkps
ValueError: – If n_bkps is too high for this series
- Return type: