TBATSModel#
- class TBATSModel(use_box_cox: bool | None = None, box_cox_bounds: Tuple[int, int] = (0, 1), use_trend: bool | None = None, use_damped_trend: bool | None = None, seasonal_periods: Iterable[int] | None = None, use_arma_errors: bool = True, show_warnings: bool = True, n_jobs: int | None = None, multiprocessing_start_method: str = 'spawn', context: ContextInterface | None = None)[source]#
Bases:
PerSegmentModelMixin
,PredictionIntervalContextIgnorantModelMixin
,PredictionIntervalContextIgnorantAbstractModel
Class for holding segment interval TBATS model.
Notes
This model supports in-sample and out-of-sample prediction decomposition. Prediction components for TBATS model are: local level, trend, seasonality and ARMA component. In-sample and out-of-sample decompositions components are estimated directly from the fitted model parameters. Box-Cox transform supported with components proportional rescaling.
Create TBATSModel with given parameters.
- Parameters:
use_box_cox (bool or None, optional (default=None)) – If Box-Cox transformation of original series should be applied. When None both cases shall be considered and better is selected by AIC.
box_cox_bounds (tuple, shape=(2,), optional (default=(0, 1))) – Minimal and maximal Box-Cox parameter values.
use_trend (bool or None, optional (default=None)) – Indicates whether to include a trend or not. When None both cases shall be considered and better is selected by AIC.
use_damped_trend (bool or None, optional (default=None)) – Indicates whether to include a damping parameter in the trend or not. Applies only when trend is used. When None both cases shall be considered and better is selected by AIC.
seasonal_periods (iterable or array-like of floats, optional (default=None)) – Length of each of the periods (amount of observations in each period). TBATS accepts int and float values here. When None or empty array, non-seasonal model shall be fitted.
use_arma_errors (bool, optional (default=True)) – When True BATS will try to improve the model by modelling residuals with ARMA. Best model will be selected by AIC. If False, ARMA residuals modeling will not be considered.
show_warnings (bool, optional (default=True)) – If warnings should be shown or not. Also see Model.warnings variable that contains all model related warnings.
n_jobs (int, optional (default=None)) – How many jobs to run in parallel when fitting BATS model. When not provided BATS shall try to utilize all available cpu cores.
multiprocessing_start_method (str, optional (default='spawn')) – How threads should be started. See https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
context (abstract.ContextInterface, optional (default=None)) – For advanced users only. Provide this to override default behaviors
Methods
fit
(ts)Fit model.
forecast
(ts[, prediction_interval, ...])Make predictions.
Get internal models that are used inside etna class.
load
(path)Load an object.
Get grid for tuning hyperparameters.
predict
(ts[, prediction_interval, ...])Make predictions with using true values as autoregression context if possible (teacher forcing).
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.Context size of the model.
- fit(ts: TSDataset) PerSegmentModelMixin [source]#
Fit model.
- Parameters:
ts (TSDataset) – Dataset with features
- Returns:
Model after fit
- Return type:
PerSegmentModelMixin
- forecast(ts: TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset [source]#
Make predictions.
- Parameters:
ts (TSDataset) – Dataset with features
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns forecast components
- Returns:
Dataset with predictions
- Return type:
- get_model() Dict[str, Any] [source]#
Get internal models that are used inside etna class.
Internal model is a model that is used inside etna to forecast segments, e.g.
catboost.CatBoostRegressor
orsklearn.linear_model.Ridge
.
- classmethod load(path: Path) Self [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get grid for tuning hyperparameters.
This is default implementation with empty grid.
- Returns:
Empty grid.
- Return type:
- predict(ts: TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset [source]#
Make predictions with using true values as autoregression context if possible (teacher forcing).
- Parameters:
ts (TSDataset) – Dataset with features
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns prediction components
- Returns:
Dataset with predictions
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )