PytorchForecastingDatasetBuilder#
- class PytorchForecastingDatasetBuilder(max_encoder_length: int = 30, min_encoder_length: int | None = None, min_prediction_idx: int | None = None, min_prediction_length: int | None = None, max_prediction_length: int = 1, static_categoricals: List[str] | None = None, static_reals: List[str] | None = None, time_varying_known_categoricals: List[str] | None = None, time_varying_known_reals: List[str] | None = None, time_varying_unknown_categoricals: List[str] | None = None, time_varying_unknown_reals: List[str] | None = None, variable_groups: Dict[str, List[int]] | None = None, constant_fill_strategy: Dict[str, str | float | int | bool] | None = None, allow_missing_timesteps: bool = True, lags: Dict[str, List[int]] | None = None, add_relative_time_idx: bool = True, add_target_scales: bool = True, add_encoder_length: bool | str = True, target_normalizer: TorchNormalizer | NaNLabelEncoder | EncoderNormalizer | str | List[TorchNormalizer | NaNLabelEncoder | EncoderNormalizer] | Tuple[TorchNormalizer | NaNLabelEncoder | EncoderNormalizer] = 'auto', categorical_encoders: Dict[str, NaNLabelEncoder] | None = None, scalers: Dict[str, StandardScaler | RobustScaler | TorchNormalizer | EncoderNormalizer] | None = None)[source]#
Bases:
BaseMixin
Builder for PytorchForecasting dataset.
Notes
This class requires
torch
extension to be installed. Read more about this at installation page.Init dataset builder.
Parameters here is used for initialization of
pytorch_forecasting.data.timeseries.TimeSeriesDataSet
object.Methods
create_inference_dataset
(ts, horizon)Create inference dataset.
Create train dataset.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.- Parameters:
max_encoder_length (int) –
min_encoder_length (int | None) –
min_prediction_idx (int | None) –
min_prediction_length (int | None) –
max_prediction_length (int) –
constant_fill_strategy (Dict[str, str | float | int | bool] | None) –
allow_missing_timesteps (bool) –
add_relative_time_idx (bool) –
add_target_scales (bool) –
target_normalizer (TorchNormalizer | NaNLabelEncoder | EncoderNormalizer | str | List[TorchNormalizer | NaNLabelEncoder | EncoderNormalizer] | Tuple[TorchNormalizer | NaNLabelEncoder | EncoderNormalizer]) –
categorical_encoders (Dict[str, NaNLabelEncoder] | None) –
scalers (Dict[str, StandardScaler | RobustScaler | TorchNormalizer | EncoderNormalizer] | None) –
- create_inference_dataset(ts: TSDataset, horizon: int) TimeSeriesDataSet [source]#
Create inference dataset.
This method should be used only after
create_train_dataset
that is used during model training.- Parameters:
- Raises:
ValueError: – if method was used before
create_train_dataset
- Return type:
- create_train_dataset(ts: TSDataset) TimeSeriesDataSet [source]#
Create train dataset.
- Parameters:
ts (TSDataset) – Time series dataset.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )