TFTModel#
- class TFTModel(decoder_length: int | None = None, encoder_length: int | None = None, dataset_builder: PytorchForecastingDatasetBuilder | None = None, train_batch_size: int = 64, test_batch_size: int = 64, lr: float = 0.001, hidden_size: int = 16, lstm_layers: int = 1, attention_head_size: int = 4, dropout: float = 0.1, hidden_continuous_size: int = 8, loss: MultiHorizonMetric | None = None, trainer_params: Dict[str, Any] | None = None, quantiles_kwargs: Dict[str, Any] | None = None, **kwargs)[source]#
Bases:
_DeepCopyMixin
,PytorchForecastingMixin
,SaveNNMixin
,PredictionIntervalContextRequiredAbstractModel
Wrapper for
pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer
.Note
This model requires
torch
extension to be installed. Read more about this at installation page.Notes
We save
pytorch_forecasting.data.timeseries.TimeSeriesDataSet
in instance to use it in the model. It`s not right pattern of using Transforms and TSDataset.Initialize TFT wrapper.
- Parameters:
decoder_length (int | None) – Decoder length.
encoder_length (int) – Encoder length.
dataset_builder (etna.models.nn.utils.PytorchForecastingDatasetBuilder) – Dataset builder for PytorchForecasting.
train_batch_size (int) – Train batch size.
test_batch_size (int) – Test batch size.
lr (float) – Learning rate.
hidden_size (int) – Hidden size of network which can range from 8 to 512.
lstm_layers (int) – Number of LSTM layers.
attention_head_size (int) – Number of attention heads.
dropout (float) – Dropout rate.
hidden_continuous_size (int) – Hidden size for processing continuous variables.
loss (MultiHorizonMetric) – Loss function taking prediction and targets. Defaults to
pytorch_forecasting.metrics.QuantileLoss
.trainer_kwargs – Additional arguments for pytorch_lightning Trainer.
quantiles_kwargs (Dict[str, Any] | None) – Additional arguments for computing quantiles, look at
to_quantiles()
method for your loss.
Methods
fit
(ts)Fit model.
forecast
(ts, prediction_size[, ...])Make predictions.
Get internal model that is used inside etna class.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
predict
(ts, prediction_size[, ...])Make predictions.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.Context size of the model.
trainer_params
dataset_builder
train_batch_size
test_batch_size
encoder_length
- fit(ts: TSDataset)[source]#
Fit model.
- Parameters:
ts (TSDataset) – TSDataset to fit.
- Returns:
model
- forecast(ts: TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset [source]#
Make predictions.
This method will make autoregressive predictions.
- Parameters:
ts (TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns forecast components
- Returns:
TSDataset with predictions.
- Return type:
- get_model() Any [source]#
Get internal model that is used inside etna class.
Model is the instance of
pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer
.- Returns:
Internal model
- Return type:
- classmethod load(path: Path) Self [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes parameters:
hidden_size
,lstm_layers
,dropout
,attention_head_size
,lr
. Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- predict(ts: TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset [source]#
Make predictions.
This method will make predictions using true values instead of predicted on a previous step. It can be useful for making in-sample forecasts.
- Parameters:
ts (TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns prediction components
- Returns:
TSDataset with predictions.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )