DensityOutliersTransform#
- class DensityOutliersTransform(in_column: str, window_size: int = 15, distance_coef: float = 3, n_neighbors: int = 3, distance_func: ~typing.Callable[[float, float], float] = <function absolute_difference_distance>)[source]#
Bases:
OutliersTransform
Transform that uses
get_anomalies_density()
to find anomalies in data.Warning
This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.
Create instance of DensityOutliersTransform.
- Parameters:
in_column (str) – name of processed column
window_size (int) – size of windows to build
distance_coef (float) – factor for standard deviation that forms distance threshold to determine points are close to each other
n_neighbors (int) – min number of close neighbors of point not to be outlier
distance_func (Callable[[float, float], float]) – distance function
Methods
detect_outliers
(ts)Call
get_anomalies_density()
function with self parameters.fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- detect_outliers(ts: TSDataset) Dict[str, List[Timestamp]] [source]#
Call
get_anomalies_density()
function with self parameters.
- fit(ts: TSDataset) Transform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) – Dataset to fit the transform on.
- Returns:
The fitted transform instance.
- Return type:
Transform
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- inverse_transform(ts: TSDataset) TSDataset [source]#
Inverse transform TSDataset.
Apply the _inverse_transform method.
- classmethod load(path: Path) Self [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes parameters:
window_size
,distance_coef
,n_neighbors
. Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )