DifferencingTransform#
- class DifferencingTransform(in_column: str, period: int = 1, order: int = 1, inplace: bool = True, out_column: str | None = None)[source]#
Bases:
ReversibleTransform
Calculate a time series differences.
During
fit
this transform can work with NaNs at the beginning of the segment, but fails when meets NaN inside the segment. Duringtransform
andinverse_transform
there is no special treatment of NaNs.Notes
To understand how transform works we recommend: Stationarity and Differencing
Create instance of DifferencingTransform.
- Parameters:
in_column (str) – name of processed column
period (int) – number of steps back to calculate the difference with, it should be >= 1
order (int) – number of differences to make, it should be >= 1
inplace (bool) –
if True, apply transformation inplace to in_column,
if False, add transformed column to dataset
out_column (str | None) –
if set, name of added column, the final name will be ‘{out_column}’;
if isn’t set, name will be based on
self.__repr__()
- Raises:
ValueError: – if period is not integer >= 1
ValueError: – if order is not integer >= 1
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) DifferencingTransform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) –
- Return type:
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- inverse_transform(ts: TSDataset) TSDataset [source]#
Inverse transform TSDataset.
Apply the _inverse_transform method.
- classmethod load(path: Path) Self [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes
order
parameter. Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )