MRMRFeatureSelectionTransform#
- class MRMRFeatureSelectionTransform(relevance_table: RelevanceTable, top_k: int, features_to_use: List[str] | Literal['all'] = 'all', fast_redundancy: bool = False, relevance_aggregation_mode: str = AggregationMode.mean, redundancy_aggregation_mode: str = AggregationMode.mean, atol: float = 1e-10, return_features: bool = False, **relevance_params)[source]#
Bases:
BaseFeatureSelectionTransform
Transform that selects features according to MRMR variable selection method adapted to the timeseries case.
Notes
Transform works with any type of features, however most of the models works only with regressors. Therefore, it is recommended to pass the regressors into the feature selection transforms.
Init MRMRFeatureSelectionTransform.
- Parameters:
relevance_table (RelevanceTable) – method to calculate relevance table
top_k (int) – num of features to select; if there are not enough features, then all will be selected
features_to_use (List[str] | Literal['all']) – columns of the dataset to select from if “all” value is given, all columns are used
fast_redundancy (bool) –
True: compute redundancy only inside the the segments, time complexity :math:`O(top_k * n_segments * n_features * history_len)
False: compute redundancy for all the pairs of segments, time complexity \(O(top\_k * n\_segments^2 * n\_features * history\_len)\)
relevance_aggregation_mode (str) – the method for relevance values per-segment aggregation
redundancy_aggregation_mode (str) – the method for redundancy values per-segment aggregation
atol (float) – the absolute tolerance to compare the float values
return_features (bool) – indicates whether to return features or not.
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) Transform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) – Dataset to fit the transform on.
- Returns:
The fitted transform instance.
- Return type:
Transform
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- inverse_transform(ts: TSDataset) TSDataset [source]#
Inverse transform TSDataset.
Apply the _inverse_transform method.
- classmethod load(path: Path) Self [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes
top_k
parameter. Other parameters are expected to be set by the user.For
top_k
parameter the maximum suggested value is not greater thanself.top_k
.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )