TimeFlagsTransform#
- class TimeFlagsTransform(minute_in_hour_number: bool = True, fifteen_minutes_in_hour_number: bool = False, hour_number: bool = True, half_hour_number: bool = False, half_day_number: bool = False, one_third_day_number: bool = False, out_column: str | None = None)[source]#
Bases:
IrreversibleTransform
,FutureMixin
TimeFlagsTransform is a class that implements extraction of the main time-based features from datetime column.
Initialise class attributes.
- Parameters:
minute_in_hour_number (bool) – if True: add column with minute number to feature dataframe in transform
fifteen_minutes_in_hour_number (bool) – if True: add column with number of fifteen-minute interval within hour with numeration from 0 to feature dataframe in transform
hour_number (bool) – if True: add column with hour number to feature dataframe in transform
half_hour_number (bool) – if True: add column with 0 for the first half of the hour and 1 for the second to feature dataframe in transform
half_day_number (bool) – if True: add column with 0 for the first half of the day and 1 for the second to feature dataframe in transform
one_third_day_number (bool) – if True: add column with number of 8-hour interval within day with numeration from 0 to feature dataframe in transform
out_column (str | None) –
base for the name of created columns;
if set the final name is ‘{out_column}_{feature_name}’;
if don’t set, name will be
transform.__repr__()
, repr will be made for transform that creates exactly this column
- Raises:
ValueError – if feature has invalid initial params:
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) Transform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) – Dataset to fit the transform on.
- Returns:
The fitted transform instance.
- Return type:
Transform
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- classmethod load(path: Path) Self [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes parameters:
minute_in_hour_number
,fifteen_minutes_in_hour_number
,hour_number
,half_hour_number
,half_day_number
,one_third_day_number
. Other parameters are expected to be set by the user.There are no restrictions on all
False
values for the flags.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )